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Context: Gravitational wave astronomy

I First detection by
LIGO: binary black hole
merger (GW150914)

I Undetectable by
conventional astronomy!
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Fabry-Pérot cavity Image credit: Phys. Rev. Lett. 116, 061102 (2016)



Highlights of detections

I Black hole mergers: probes
population/formation

I Neutron star mergers:
I Nuclear matter EoS
I EM counterparts

I Independent probe of
cosmic expansion (with
localization)

I General constraints on
modified gravity

Image credit: Phys. Rev. X 9, 031040 (2019)



Future space-based detector

I LISA Mission: ∼ 2034

I Lower f =⇒ higher-mass
mergers

I LISA Pathfinder: exceeded
design sensitivity (!)

Image credit: arXiv:gr-qc/9506086

[Thorne, 1995]
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Background: Extreme mass-ratio inspirals (EMRIs)

I Astrophysics: stellar-mass objects
orbiting supermassive black holes

I Mass ratio: m/M . 10−5

I Needs LISA: M & 106M�

I Signal maps out geometry of black hole
spacetime

I Tests “no-hair theorem”: black holes
only characterized by mass & spin

m

M



Self-force

m

M

I m/M � 1: suggests perturbative
expansion for EMRIs

I 0th order: emission from stable orbit

I Higher orders: gravitational “self-field”
influences orbit

I Corrections to geodesic motion in point
particle limit

=⇒



Flux-balance laws (classical electromagnetism)

I Orbits characterized by
E = pat

a, Lz = paφ
a

(t, φ symmetries)

I Averaged loss of (e.g.) E:

〈
dE

dτ

〉
=

〈
dE∞
dτ

〉
︸ ︷︷ ︸

lost to infinity

+

lost to black hole︷ ︸︸ ︷〈
dEhor.

dτ

〉

I Conserved currents: “E, Lz of
matter & fields”

jat ≡ T abtb, jaφ ≡ T abφb

+Q

−q



Flux-balance laws (non-spinning black holes)

I Orbits characterized by
E = pat

a, Lz = paφ
a

(t, φ symmetries)

I Averaged loss of (e.g.) E:

〈
dE

dτ

〉
=

〈
dE∞
dτ

〉
︸ ︷︷ ︸

lost to infinity

+

lost to black hole︷ ︸︸ ︷〈
dEhor.

dτ

〉

I Conserved currents: “E, Lz of
matter & fields”

jat ≡ T abtb, jaφ ≡ T abφb

M

m



Spinning black holes: the Carter constant

I Not spherically symmetric
=⇒ no “total angular momentum” ~L
=⇒ non-planar motion

I Additional constant of motion required:
Carter constant K [Carter, 1968]

I Non-spinning: K = L2

I
〈

dK

dτ

〉
required to determine inspiral

I No conserved K constructed from T ab

[G & Flanagan, 2015]



Spinning black holes: avoiding flux-balance

I
〈

dK

dτ

〉
computable directly (1st order)

I Looks like a flux-balance law:〈
dK

dτ

〉
= (term at ∞)+(term at horizon)

I Carter constant for gravitational waves?

I Might make 2nd order calculations easier

?

?

[Mino, 2003], [Sago et al., 2006]



“Carter current” for scalar fields

I K = Kabp
apb

I D = ∇a(Kab∇b) satisfies [D,�] = 0

I Conserved current:

jaK ≡ (DΦ)∇aΦ− Φ∇aDΦ

I “Geometric optics”: Φ ∝ e−iϑ/ε, ε→ 0
=⇒ scalar quanta propagating on rays∫

jaKdΣa ∝
∑

scalar
quanta

K

“Reduces to K for point particle”

Σ

[Carter, 1977]



Anatomy of the scalar Carter current

I Bilinear “Klein-Gordon current”:

ja(Φ1,Φ2) = Φ1∇aΦ2 − Φ2∇aΦ1

I Map on solution space: “symmetry operator”

�DΦ = D�Φ

Φ solution =⇒ DΦ solution

I Conserved current: ja(Φ,DΦ)

I All of these steps can be generalized to linearized gravity!



New currents for linearized gravity

Bilinear current + symmetry operator:

sCj
a ≡ ja

(
sC · δg, sC · δg

)︸ ︷︷ ︸
“Adjoint currents” (s=±2)

,
2C̊j

a ≡
∑
s=±2

ja
(
sC̊ · δg, sC̊ · δg

)
︸ ︷︷ ︸

“Projected adjoint current”

Finite as r →∞
Current Outgoing waves Ingoing waves Local?

2Cj
a × X X

−2Cj
a X × X

2C̊j
a X X ×



Geometric optics

I “High-frequency” ansatz:

δgab = Re
{
a$ab[1 +O(ε)]e−iϑ/ε

}
(ε→ 0)

I Gravitons propagating along rays

I $ab captures polarization; characterized by
eR, eL with |eR|2 + |eL|2 = 1



Geometric optics for our currents

I Integrating our currents yields∫
···j

adΣa ∝
∑

gravitons

K4
(
|eR|2 − |eL|2

)
(only valid for

2C̊j
a with caveats)

I |eR|2 − |eL|2 dependence: vanishes for
linear polarizations

I Other currents in [G & Flanagan, 2020]
similar

Σ



Bilinear currents: Symplectic product

I Lagrangian formulation for field φ

I Vary Lagrangian density:

δ(
√
−g L) =

√
−g [E · δφ︸ ︷︷ ︸

EoM

+

“boundary term”︷ ︸︸ ︷
∇aθa(δφ)]

I Vary θa:

√
−g ja(δ1φ, δ2φ) ≡ δ1[

√
−g θa(δ2φ)]− δ2[

√
−g θa(δ1φ)]

I δ1φ, δ2φ satisfy linearized EoM =⇒

∇aja(δ1φ, δ2φ) = 0

[Burnett & Wald, 1990]



Bilinear currents: Symplectic product (examples)

I Generalizes Klein-Gordon current:

L = (∇Φ)2 =⇒ ja(δ1Φ, δ2Φ) ∼ δ1Φ∇aδ2Φ− δ2Φ∇aδ1Φ

I Bilinear current for metric perturbations:

L =
1

16π
Rww�

ja(δ1g, δ2g︸ ︷︷ ︸
metric pert.

) = Sabcdef [δ1gbc∇dδ2gef − (1←→ 2)]

where

Sabcdef = (triple products of raised metric tensors)

[Burnett & Wald, 1990]



Background: Black hole perturbation theory

I “Weyl scalars” δΨ0, δΨ4: components of curvature

I Characterize radiation:

δΨ4 ∼ eiω(t−r)/r︸ ︷︷ ︸
outgoing waves

, δΨ0 ∼ eiω(t+r)/r︸ ︷︷ ︸
ingoing waves

I Rescaled versions have “decoupled” EoM:

sΩ ≡

{
δΨ0 s = −2

(r − ia cos θ)4δΨ4 s = 2ww�
s� sΩ = 8π sτabδT

ab

(Teukolsky equation)

[Teukolsky, 1973]



Background: Black hole perturbation theory

Teukolsky equation: s� sΩ = 8π sτabδT
ab

I Two decoupled, complex scalar PDEs, easier than tensor
PDE:

Eabcdδgcd = 8πδT ab

I s� separates in r & θ:

s� = sR(r, t, φ) + sS(θ, t, φ)

I Consider mapping sM : δg 7→ sΩ; then

s� sM = sτ · E

[Teukolsky, 1973]



Adjoint symmetry operators

I Take adjoint:

sτ · E = s� sM =⇒ E† · sτ † = sM
†
s�
†

I Key insight: E† = E , s�† = −s�

I Multiply on right by −sM :

E · sτ † −sM︸ ︷︷ ︸
≡ sC

= sM
†
−s�−sM = sM

†
−sτ · E

I δg vacuum solution =⇒ sC · δg vacuum solution!

[Wald, 1978]



Asymptotics & projection operators

I sC · δg not always well-behaved:
I Outgoing waves: 2C · δg ∼ r
I Ingoing waves: −2C · δg ∼ r

I Projection operators:

Pdown(outgoing waves) = 0,

Pup(ingoing waves) = 0

I Non-local: care about r →∞ behavior!

I New symmetry operators:

2C̊ ≡ 2τ
† Pdown

−2M, −2C̊ ≡ −2τ
† Pup

2M



New currents for linearized gravity

Bilinear current + symmetry operator:

sCj
a ≡ ja

(
sC · δg, sC · δg

)︸ ︷︷ ︸
“Adjoint currents” (s=±2)

,
2C̊j

a ≡
∑
s=±2

ja
(
sC̊ · δg, sC̊ · δg

)
︸ ︷︷ ︸

“Projected adjoint current”

Finite as r →∞
Current Outgoing Ingoing Local? Geometric optics

2Cj
a × X X

K4(|eR|2 − |eL|2)−2Cj
a X × X

2C̊j
a X X ×



Conclusions and outlook for part I

I Found collection of conserved currents for linearized gravity
associated with Carter constant (generalized notion of L2)

I Geometric optics result suggestive of relation to point
particle Carter constant

I Future work: how do these currents behave when coupled
to sources (e.g. point particles)?
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The gravitational wave memory effect

I Change in separation due to gravitational
waves [Zel’dovich & Polnarev, 1974]

I Observable by LIGO & pulsar timing arrays in
future

I Two ways to think about it:
I Change in metric: ∆ξi ∼ ∆[δgij ]ξ

j

I Integrated curvature:
∆ξµ ∼

∫∫
Rµανβu

αuβξν

~ξ

~ξ+∆~ξ



Physical sources: Linear memory

Quadrupole formula: δgij = 2Q̈ij/r +O(1/r2)

I What if Q̈ij differs before and after wave passes by?

I Qij ∼ mxixj , so

∆Q̈ij ∼ m∆ [vivj ]

I vi changes direction =⇒ memory!

I Unbound systems, particles flying off to infinity



Physical sources: Nonlinear memory

I Memory still exists for bound systems; the “particles flying
off to infinity” are gravitational waves

I Measurable by LIGO

[Christodoulou, 1991], [Thorne, 1992]



“New memory effects”

Relative boost

[Grishchuk & Polnarev,

1989]

∼
∫
Rµανβu

αuβξν

Relative rotation

[Flanagan & Nichols,

2014]

∼
∫
Rµανβu

αξβ

Proper time shift

[Strominger &

Zhiboedov, 2014]

∼
∫
Rαβγδu

αξβuγξδ



Subleading displacement memory effect

I Assume initial ξ̇µ 6= 0:

∆ξµ ∼

usual memory︷ ︸︸ ︷∫∫
Rµανβu

αuβξν

+ (τ ′ − τ)ξ̇µ +

∫∫∫
Rµανβu

αuβ ξ̇ν︸ ︷︷ ︸
“subleading” memory

I E & B decomposition on a sphere:
CoM memory [Nichols, 2018] &
Spin memory [Pasterski, et al.; 2016] ~ξ

~ξ+∆~ξ

~u ~u+~̇ξ



Classification of observables

Persistent observables

I Measurement over a time interval that
vanishes in absence of radiation

I This talk: flat-to-flat transitions (e.g.
plane waves)

Special case: Memory observables

I Associated with boundary symmetries
(asymptotic, horizons, etc.)

I Example: nonzero when conjugate
“conserved quantities” differ

I Not the focus of this talk

~ξ

~ξ+∆~ξ

[Flanagan, G, Harte, Nichols; 2019]



Summary of persistent observables

Integrals of Scaling as Associated with

Observable Riemann tensor r →∞ symmetry?

Displacement 2 1/r Supertranslations

Relative boost 1 1/r2 No

Relative rotation 1 1/r2 No

Relative proper time 1 1/r2 No

Subleading displacement 3 1/r Superrotations

Curve deviation 1–3a ? ?

Angular momentum holonomy 1–3a ? ?

Spinning test particle 1–2 ? ?

aWith acceleration, the number of time integrals is 4 and higher.

Old observables New observables



Summary of persistent observables

Integrals of Scaling as Associated with

Observable Riemann tensor r →∞ symmetry?

Displacement 2 1/r Supertranslations

Relative boost 1 1/r2 No

Relative rotation 1 1/r2 No

Relative proper time 1 1/r2 No

Subleading displacement 3 1/r Superrotations

Curve deviation 1–3a ? ?

Angular momentum holonomy 1–3a ? ?

Spinning test particle 1–2 ? ?

aWith acceleration, the number of time integrals is 4 and higher.

Focus of talk: how angular momentum encodes old observables



Angular momentum and displacement memory

Before burst:

~p

~r1

~r2

~ξ Observers

∆~L = ~ξ × ~p



Angular momentum and displacement memory

After burst with memory:

~p

~r1′

~r2′

~ξ + ∆~ξ Observers

∆~L′ −∆~L = ∆~ξ × ~p



Linear momentum and parallel transport

~r

~p

~p

I ~p is a vector at particle,
not observer

I ~r × ~p requires parallel
transport

I Parallel transport is
path-dependent in curved
spacetimes: “holonomy”



Linear momentum and parallel transport

~r

~p

~p

I ~p is a vector at particle,
not observer

I ~r × ~p requires parallel
transport

I Parallel transport is
path-dependent in curved
spacetimes: “holonomy”



Parallel transport and relative boost/rotation

I Basis vectors: parallel-transported
along all curves

kb∇bva = 0

I Geodesic motion: four-velocity
parallel-transported:

ub∇bua = 0

(comparisons also parallel transport)



Angular momentum transport

Values at x′ from those at x:

x

x′

ka

kb∇bP a = 0︸ ︷︷ ︸
parallel transport
(boost/rotation)

, kc∇cJab = 2P [akb]︸ ︷︷ ︸
“~r × ~p ” part

(displacement/proper time)



Angular momentum holonomy

I Solving

kb∇bP a = 0

kc∇cJab = 2P [akb]

around loop gives “holonomy”:

XA ≡
(
Pa

Jab

)
7→

0

ΛABX
B

I Encodes old observables:

0

ΛAC =

(
Λac 0

2∆χ[aΛb]c Λ[a
[cΛ

b]
d]

)
Λab: Boost & rotation
∆χa: Displacement & proper time



Generalizing angular momentum transport

I Transport law inspired by flat spacetime

I Add in non-trivial curvature coupling:

kb∇bP a = 0ww�
kb∇bP a = −

κ
Ka

bcdk
bJcd

(
κ
Ka

bcd constructed from curvature)

I Two examples of
κ
Ka

bcd:

1
2R

a
bcd︸ ︷︷ ︸

“dual Killing”

, −1
4R

a
bcd + 1

2δ
a

[cRd]b︸ ︷︷ ︸
“path-independent” x

x′

ka



Dual Killing transport

I Small body: P a and Jab arise as multipoles

I Evolution given by Mathisson-Papapetrou
equations:

ub∇bP a = −1

2
Rabcdu

bJcd

uc∇cJab = 2P [aub]

(exactly dual Killing transport!)

I Connected with symmetries (“Killing vectors”):

xµ → xµ + εξµ preserves metric

=⇒ P aξa +
1

2
Jab∇aξb = const.

ua



Generalized angular momentum holonomy

I Solving

kb∇bP a = −
κ
Ka

bcdk
bJcd

kc∇cJab = 2P [akb]

around loop gives holonomy:

XA 7→
κ
ΛABX

B

I Encodes old & new observables

I “Path-independent transport”:

κ
Ka

bcd = −1
4R

a
bcd + 1

2δ
a

[cRd]b

=⇒
κ
ΛAB can be trivial asymptotically

(w/ no radiation)



Conclusions and outlook for part II

I Persistent observables: generalized enduring effects on
gravitational wave detectors

I Origin-dependence of angular momentum encodes old (and
introduces new) observables

I Future work: considering these and other observables near
null infinity; relationship to asymptotic symmetries?



Thank you!
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